
spy
Release v0.1a4

January 08, 2015

Contents

1 Contents 3
1.1 Introduction . 3
1.2 CLI reference . 5
1.3 spy from Python . 6
1.4 API . 7
1.5 Examples . 9
1.6 Glossary . 10

Python Module Index 11

i

ii

spy, Release v0.1a4

spy is a CLI and API for processing streams in Python.

Contents 1

spy, Release v0.1a4

2 Contents

CHAPTER 1

Contents

1.1 Introduction

spy is a Python CLI. It’s quite powerful, as you’ll see below, but let’s start with the basics: you feed it a Python
expression, it spits out the result.

$ spy ’3*4’
12

There’s no need to import modules—just use them and spy will make sure they’re available:

$ spy ’math.pi’
3.141592653589793

1.1.1 I/O

Standard input is exposed as a file-like object called pipe:

$ cat test.txt
this
file
has
five
lines
$ spy ’pipe.readline()’ < test.txt
this

It’s a io.TextIOBase, with a couple of extra features: You can index into it, or convert all of stdin into a string
with str().

$ spy ’pipe[1]’ < test.txt
file
$ spy ’pipe[1::2]’ < test.txt
[’file’, ’five’]
$ spy ’str(pipe).replace("\n", " ")’ < test.txt
this file has five lines

Passing -l (or --each-line) to spy will iterate through stdin instead, so your expressions will run once per line of
input:

$ spy -l ’"-%s-" % pipe’ < test.txt
-this-

3

http://docs.python.org/3.4/library/io.html#io.TextIOBase

spy, Release v0.1a4

-file-
-has-
-five-
-lines-

spy helpfully removes the terminating newlines from these strings.

1.1.2 Piping

Much like the standard assortment of unix utilities, which expect to have their inputs and outputs wired up to each
other in order to do useful things, each fragment processes some data then passes it on to the next one.

Data passes from left to right. Fragments can return the special constant spy.DROP to prevent further processing of
the current datum and continue to the next.

$ spy ’3’ ’pipe * 2’ ’pipe * "!"’
!!!!!!
$ spy -l ’if pipe.startswith("f"): pipe = spy.DROP’ < test.txt
this
has
lines

1.1.3 Limiting output

--start=<integer>, -s <integer>
Start printing output at this zero-based index.

--end=<integer>, -e <integer>
Stop processing at this zero-based index.

-s and -e mirror Python’s slice semantics, so -s 1 -e 3 will show results 1 and 2. This means -e on its own is
equivalent to a limit on the number of results.

Once the result specified by -e has been hit, no more data will be processed.

1.1.4 Data flow

Before I explain this, a brief discourse into how data moves around in spy: Each fragment in spy tries to consume
data from the fragment to its left. It processes it, then yields to the fragment to its right, which will do the same thing.
To run the program, spy just tries to pump as much data out of the rightmost fragment as it can—everything else is
handled by the fragment mechanic.

In the examples I’ve given above, each fragment has consumed and yielded data on a one-to-one basis, but there’s no
inherent reason for that restriction. Fragments can yield or consume (or both) multiple values using spy.many and
spy.collect, respectively.

1.1.5 Decorators

In one example above, we used an if statement to filter by a predicate. That’s far from elegant—by my rough guess,
about half the characters in the fragment are boilerplate. spy provides some function decorators to avoid repeating this
and a few other common constructs—they’re available as flags from the CLI:

--accumulate <fragment>, -c <fragment>
passes the the result of spy.collect() to the fragment.

4 Chapter 1. Contents

spy, Release v0.1a4

--callable <fragment>, -c <fragment>
calls whatever the following fragment returns, with a single argument: the input value to the fragment.

--filter <fragment>, -f <fragment>
filters the data stream, using the fragment as a predicate: if it returns any true value, the data passes through, but
if it returns a false value spy.DROP is returned instead.

--many <fragment>, -m <fragment>
calls spy.many() with the return value of the fragment (which must be iterable).

1.1.6 Exception handling

If your code raises an uncaught exception, spy will try to intercept and reformat the traceback, omitting the frames
from spy’s own machinery. Special frames will be inserted where appropriate describing the fragment’s position,
source code, and input data at the time the exception was raised:

$ spy ’None + 2’
Traceback (most recent call last):

Fragment 1
None + 2
input to fragment was <SpyFile stream=<_io.TextIOWrapper name=’<stdin>’ mode=’r’ encoding=’UTF-8’>>

TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

If an exception is raised in a decorator outside the call to the fragment body, the fragment is mentioned anyway. This
is not strictly true, given that none of the code in the fragment takes part in the call stack in this case, but this particular
lie is almost universally more useful:

$ spy -c None
Traceback (most recent call last):

Fragment 1, in decorator spy.decorators.callable
--callable ’None’
input to fragment was <SpyFile stream=<_io.TextIOWrapper name=’<stdin>’ mode=’r’ encoding=’UTF-8’>>

File "/home/edk/src/spy/spy/decorators.py", line 44, in callable
return result(v)

TypeError: ’NoneType’ object is not callable

The philosophy here is that what made it go wrong is more interesting than exactly how it went wrong, so that’s what
spy gives you by default. You can get the real traceback by passing --no-exception-handling to spy.

1.2 CLI reference

Contents

• CLI reference
– Regular options

* Output limiting options
– Decorators
– Alternative actions

1.2.1 Regular options

--each-line, -l
Process each line as its own string (rather than stdin as a file at once)

1.2. CLI reference 5

http://docs.python.org/3.4/glossary.html#term-iterable

spy, Release v0.1a4

--no-default-fragments
Don’t add any fragments to the chain that weren’t explicitly specified in the command line.

--no-exception-handling
Disable spy’s exception handling and reformatting. This is mostly only useful for debugging changes to spy
itself.

--pipe-name=<name>
Name the magic pipe variable <name> instead of pipe.

Output limiting options

The index arguments for these options refer to results, not input. If a single piece of input data results in 4 separate
pieces of output, they’ll all count.

--start=<index>, -s <index>
Start printing results at this zero-based index.

--end=<index>, -e <index>
Stop processing data at this zero-based index.

1.2.2 Decorators

Decorator options must precede a code step. Multiple decorators can stack together. They have exactly the same effect
as decorating a function in Python.

See the decorator API docs for a list of them.

1.2.3 Alternative actions

--help, -h
Show usage and option descriptions.

--show-fragments
Print out a list of string representations of the complete fragment chain that would be executed.

1.3 spy from Python

The introduction showed how to use spy from the command line. That’s not the only way: spy works just as well from
other Python code. The CLI is just a wrapper around spy’s public API to make it easier to get to.

I don’t think it is useful in very many cases as a Python library, but if you want to create an alternative command-line
interface for example, this may be of interest.

API documentation is available. What follows is a (very) brief guide, which I hope to expand on in the future.

1.3.1 Basic usage

As with the CLI, you create fragments and then pass data through them. And, as with the CLI, creating fragments is
easy. You decorate a regular function with spy.fragment():

6 Chapter 1. Contents

spy, Release v0.1a4

import spy

@spy.fragment
def add_five(v):

return v + 5

So, on to the feeding data part. You don’t feed data to fragments on their own, but to chains, so let’s create one:

chain = spy.chain([add_five])

In order to feed data into it, call the chain object with an iterable to feed into the chain. The call will return an iterable
of the results:

data = [1, 2, 3, 4]
print(list(chain(data))) # [6, 7, 8, 9]

These iterators don’t interfere with each other, even if they’re created by the same chain object, so one chain can be
used to process multiple independent sets of input data.

1.3.2 Differences from the CLI

As documented, collect() takes a context argument. It can be omitted when using the CLI because it’s auto-
matically filled in (it has to be, since there’s no way to access the context object from CLI fragments). There is no
equivalent mechanism outside the CLI, so if you want to use collect(), you must provide context. You can get
the context object by accepting a context argument in your fragment function:

@spy.fragment
def foo(v, context):

c = spy.collect(context)
do stuff with c

1.4 API

Detailed documentation for spy’s API.

1.4.1 spy

This module exposes spy’s core API.

See also:

spy.decorators Function decorators for use with spy fragments

Constants

spy.DROP
A signaling object: when returned from a fragment, the fragment will not yield any value.

Exceptions

exception spy.CaughtException

1.4. API 7

http://docs.python.org/3.4/glossary.html#term-decorator

spy, Release v0.1a4

print_traceback()
Print the (formatted) traceback captured when the exception was raised.

Functions

class spy.catch
A context manager. Exceptions raised in the context will be subject to spy’s traceback formatting and wrapped
in a CaughtException. If these are not caught, spy uses an exception hook to force them to be formatted
properly. If you opt to catch CaughtException instead, you can use its print_traceback() method to
print the formatted traceback without exiting.

class spy.chain(seq)
Construct a chain of fragments from seq.

Parameters seq (sequence) – Fragments to chain together

__call__(data)
Alias for apply().

apply(data)
Feed data into the fragment chain, and return an iterator over the resulting data.

classmethod auto_fragments(seq)
Like the regular constructor, but for each element in seq, apply fragment() to it if it isn’t already a
fragment.

Items in seq must be either regular functions (not generators) or fragments.

run_to_exhaustion(data)
Call apply(), then iterate until the chain runs out of data.

spy.collect(context)
Return an iterator of the elements being processed by the current fragment. Can be used to write a fragment
that consumes multiple items.

@spy.fragment
Given a callable func, return a fragment that calls func to process data. funcmust take at least one positional
argument, a single value to process and return.

Optionally it can take another argument, called context. If it does, a context object will be passed to it on
each invocation. This object has no documented public functionality; its purpose is to be passed to spy API
functions that require it (namely collect()).

spy.many(ita)
Return a signaling object that instructs spy to yield values from ita from the current fragment, instead of
yielding only one value.

1.4.2 spy.decorators

This module contains various function decorators for use in spy fragments.

@spy.decorators.accumulate

--accumulate, -a

Accumulate values into an iterator by calling spy.collect(), and pass that to the fragment.

This can be used to write a fragment which executes at most once while passing data through:

8 Chapter 1. Contents

http://docs.python.org/3.4/glossary.html#term-context-manager
http://docs.python.org/3.4/glossary.html#term-sequence
http://docs.python.org/3.4/glossary.html#term-iterator

spy, Release v0.1a4

-ma ’x = y;’

@spy.decorators.callable

--callable, -c

Call the result of the decorated fragment

@spy.decorators.filter

--filter, -f

Use the decorated fragment as a predicate—only elements for which the fragment returns a true value will be
passed through.

@spy.decorators.many

--many, -m

Call spy.many() with the result of the fragment.

1.5 Examples

1.5.1 Sort

$ spy -mc sorted < test.txt
file
five
has
lines
this

1.5.2 Filter

$ spy -l -f ’len(pipe) == 4’ < test.txt
this
file
five

1.5.3 Enumerate

Naively:

$ spy -m "[’{}: {}’.format(n, v) for n, v in enumerate(pipe, 1)]" < test.txt
0: this
1: file
2: has
3: five
4: lines

Taking advantage of spy piping:

1.5. Examples 9

spy, Release v0.1a4

$ spy -m ’enumerate(pipe, 1)’ "’{}: {}’.format(*pipe)" < test.txt
1: this
2: file
3: has
4: five
5: lines

1.5.4 Convert CSV to JSON

$ spy -c csv.DictReader -c list -c json.dumps < thing.csv > thing.json

1.6 Glossary

fragment An object which can be used by spy.chain() to create chained iterators.

The following kinds of object only are considered fragments:

• The return value of a successful call to spy.fragment()

• A generator taking exactly one argument, the iterable to get input values from.

Note: In any given version of spy, it’s possible that other objects may work as fragments. This is not part of
the API, and any accidental support for using other objects may go away at any time.

10 Chapter 1. Contents

Python Module Index

s
spy, 7
spy.decorators, 8

11

spy, Release v0.1a4

12 Python Module Index

Index

Symbols
–accumulate <fragment>, -c <fragment>

command line option, 4
–accumulate, -a

command line option, 8
–callable <fragment>, -c <fragment>

command line option, 4
–callable, -c

command line option, 9
–each-line, -l

command line option, 5
–end=<index>, -e <index>

command line option, 6
–end=<integer>, -e <integer>

command line option, 4
–filter <fragment>, -f <fragment>

command line option, 5
–filter, -f

command line option, 9
–help, -h

command line option, 6
–many <fragment>, -m <fragment>

command line option, 5
–many, -m

command line option, 9
–no-default-fragments

command line option, 6
–no-exception-handling

command line option, 6
–pipe-name=<name>

command line option, 6
–show-fragments

command line option, 6
–start=<index>, -s <index>

command line option, 6
–start=<integer>, -s <integer>

command line option, 4
__call__() (spy.chain method), 8

A
accumulate() (in module spy.decorators), 8
apply() (spy.chain method), 8
auto_fragments() (spy.chain class method), 8

C
callable() (in module spy.decorators), 9
catch (class in spy), 8
CaughtException, 7
chain (class in spy), 8
collect() (in module spy), 8
command line option

–accumulate <fragment>, -c <fragment>, 4
–accumulate, -a, 8
–callable <fragment>, -c <fragment>, 4
–callable, -c, 9
–each-line, -l, 5
–end=<index>, -e <index>, 6
–end=<integer>, -e <integer>, 4
–filter <fragment>, -f <fragment>, 5
–filter, -f, 9
–help, -h, 6
–many <fragment>, -m <fragment>, 5
–many, -m, 9
–no-default-fragments, 6
–no-exception-handling, 6
–pipe-name=<name>, 6
–show-fragments, 6
–start=<index>, -s <index>, 6
–start=<integer>, -s <integer>, 4

D
DROP (in module spy), 7

F
filter() (in module spy.decorators), 9
fragment, 10
fragment() (in module spy), 8

M
many() (in module spy), 8

13

spy, Release v0.1a4

many() (in module spy.decorators), 9

P
print_traceback() (spy.CaughtException method), 7

R
run_to_exhaustion() (spy.chain method), 8

S
spy (module), 7
spy.decorators (module), 8

14 Index

	Contents
	Introduction
	CLI reference
	spy from Python
	API
	Examples
	Glossary

	Python Module Index

